• Re: An interesting rational integral in Mathematica

    From nobody@nowhere.invalid@21:1/5 to Sam Blake on Sat Jan 13 10:29:11 2024
    Sam Blake schrieb:

    Some of you may find this result interesting...

    In[1047]:= $Version

    Out[1047]= "13.2.0 for Mac OS X x86 (64-bit) (November 18, 2022)"

    In[1048]:= Integrate[(2 - Sqrt[7] x^2 + 3 x^4)/(2 + Sqrt[7] x^2 - x^4)^2, x]

    Out[1048]= 1/60 (30 x AppellF1[1/2, 2, 2, 3/2, (2 x^2)/(Sqrt[7] + Sqrt[15]), (2 x^2)/(Sqrt[7] - Sqrt[15])] -
    5 Sqrt[7] x^3 AppellF1[3/2, 2, 2, 5/2, (2 x^2)/(Sqrt[7] + Sqrt[15]), (2 x^2)/(Sqrt[7] - Sqrt[15])] +
    9 x^5 AppellF1[5/2, 2, 2, 7/2, (2 x^2)/(Sqrt[7] + Sqrt[15]), (2 x^2)/(Sqrt[7] - Sqrt[15])])


    Acording to Derive 6.10, the antiderivative is simply:

    INT((2 - SQRT(7)*x^2 + 3*x^4)/(2 + SQRT(7)*x^2 - x^4)^2, x)

    - x/(x^4 - SQRT(7)*x^2 - 2)

    Martin.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)